Author

Sebastian Zeki

Published

July 23, 2018

Modified

March 23, 2024

There are many occasions when a column of data needs to be created from an already existing column for ease of data manipulation. For example, perhaps you have a body of text as a pathology report and you want to extract all the reports where the diagnosis is ‘dysplasia’.

You could just subset the data using grepl so that you only get the reports that mention this word…but what if the data needs to be cleaned prior to subsetting like excluding reports where the diagnosis is normal but the phrase ‘No evidence of dysplasia’ is present. Or perhaps there are other manipulations needed prior to subsetting.

This is where data accordionisation is useful. This simply means the creation of data from (usually) a column into another column in the same dataframe.

The neatest way to do this is with the mutate function from the {dplyr} package which is devoted to data cleaning. There are also other ways which I will demonstrate at the end.

The input data here will be an endoscopy data set:

Age <- sample(1:100, 130, replace = TRUE)
Dx <- sample(c("NDBE", "LGD", "HGD", "IMC"), 130, replace = TRUE)
TimeOfEndoscopy <- sample(1:60, 130, replace = TRUE)

library(dplyr)

EMRdf <- data.frame(Age, Dx, TimeOfEndoscopy, stringsAsFactors = F)

Perhaps you need to calculate the number of hours spent doing each endoscopy rather than the number of minutes

EMRdftbb <- EMRdf %>% mutate(TimeOfEndoscopy / 60)

# install.packages("knitr")
library(knitr)
library(kableExtra)

# Just show the top 20 results

kable(head(EMRdftbb, 20))
Age Dx TimeOfEndoscopy TimeOfEndoscopy/60
42 LGD 34 0.5666667
67 LGD 57 0.9500000
62 IMC 24 0.4000000
77 HGD 47 0.7833333
85 HGD 29 0.4833333
67 IMC 55 0.9166667
21 HGD 4 0.0666667
54 HGD 51 0.8500000
72 IMC 11 0.1833333
28 NDBE 48 0.8000000
10 LGD 31 0.5166667
60 LGD 13 0.2166667
84 NDBE 29 0.4833333
65 IMC 35 0.5833333
47 IMC 42 0.7000000
56 HGD 54 0.9000000
30 LGD 3 0.0500000
67 NDBE 20 0.3333333
94 IMC 25 0.4166667
67 IMC 35 0.5833333

That is useful but what if you want to classify the amount of time spent doing each endoscopy as follows: <0.4 hours is too little time and >0.4 hours is too long.

Using ifelse() with mutate for conditional accordionisation.

For this we would use ifelse(). However this can be combined with mutate() so that the result gets put in another column as follows

EMRdf2 <- EMRdf %>%
  mutate(TimeInHours = TimeOfEndoscopy / 60) %>%
  mutate(TimeClassification = ifelse(TimeInHours > 0.4, "Too Long", "Too Short"))

# Just show the top 20 results

kable(head(EMRdf2, 20))
Age Dx TimeOfEndoscopy TimeInHours TimeClassification
42 LGD 34 0.5666667 Too Long
67 LGD 57 0.9500000 Too Long
62 IMC 24 0.4000000 Too Short
77 HGD 47 0.7833333 Too Long
85 HGD 29 0.4833333 Too Long
67 IMC 55 0.9166667 Too Long
21 HGD 4 0.0666667 Too Short
54 HGD 51 0.8500000 Too Long
72 IMC 11 0.1833333 Too Short
28 NDBE 48 0.8000000 Too Long
10 LGD 31 0.5166667 Too Long
60 LGD 13 0.2166667 Too Short
84 NDBE 29 0.4833333 Too Long
65 IMC 35 0.5833333 Too Long
47 IMC 42 0.7000000 Too Long
56 HGD 54 0.9000000 Too Long
30 LGD 3 0.0500000 Too Short
67 NDBE 20 0.3333333 Too Short
94 IMC 25 0.4166667 Too Long
67 IMC 35 0.5833333 Too Long

Note how we can chain the mutate() function together.

Using multiple ifelse()

What if we want to get more complex and put several classifiers in? We just use more ifelse’s:

EMRdf2 <- EMRdf %>%
  mutate(TimeInHours = TimeOfEndoscopy / 60) %>%
  mutate(TimeClassification = ifelse(TimeInHours > 0.8, "Too Long", ifelse(TimeInHours < 0.5, "Too Short", ifelse(TimeInHours >= 0.5 & TimeInHours <= 0.8, "Just Right", "N"))))

# Just show the top 20 results

kable(head(EMRdf2, 20))
Age Dx TimeOfEndoscopy TimeInHours TimeClassification
42 LGD 34 0.5666667 Just Right
67 LGD 57 0.9500000 Too Long
62 IMC 24 0.4000000 Too Short
77 HGD 47 0.7833333 Just Right
85 HGD 29 0.4833333 Too Short
67 IMC 55 0.9166667 Too Long
21 HGD 4 0.0666667 Too Short
54 HGD 51 0.8500000 Too Long
72 IMC 11 0.1833333 Too Short
28 NDBE 48 0.8000000 Just Right
10 LGD 31 0.5166667 Just Right
60 LGD 13 0.2166667 Too Short
84 NDBE 29 0.4833333 Too Short
65 IMC 35 0.5833333 Just Right
47 IMC 42 0.7000000 Just Right
56 HGD 54 0.9000000 Too Long
30 LGD 3 0.0500000 Too Short
67 NDBE 20 0.3333333 Too Short
94 IMC 25 0.4166667 Too Short
67 IMC 35 0.5833333 Just Right

Using multiple ifelse() with grepl() or string_extract

Of course we need to extract information from text as well as numeric data. We can do this using grepl() or string_extract() from the library(stringr).

Let’s say we want to extract all the samples that had IMC. We don’t want to subset the data, just extract IMC into a column that says IMC and the rest say ’Non-IMC’

Using the dataset above:

library(stringr)

EMRdf$MyIMC_Column <- str_extract(EMRdf$Dx, "IMC")

# to fill the NA's we would do:EMRdf$MyIMC_Column<-ifelse(grepl("IMC",EMRdf$Dx),"IMC","NoIMC")

# Another way to do this (really should be for more complex examples when you want to extract the entire contents of the cell that has the match)

EMRdf$MyIMC_Column <- ifelse(grepl("IMC", EMRdf$Dx), str_extract(EMRdf$Dx, "IMC"), "NoIMC")

So data can be usefully created from data for further analysis.

Hopefully this way of extrapolating data and especially using conditional expressions to categorise data according to some rules is a helpful way to get more out of your data.

Please follow @gastroDS on twitter

This article originally appeared on https://sebastiz.github.io/gastrodatascience/ and has been edited to render in Quarto and had NHS-R styles applied.

Back to top

Reuse

CC0

Citation

For attribution, please cite this work as:
Zeki, Sebastian. 2018. “How to Extrapolate Data from Data.” July 23, 2018. https://nhsrcommunity.com/blog/how-to-extrapolate-data-from-data.html.