Tidy data
Tidy data

“Tidy datasets are all alike, but every messy dataset is messy in its own way.”

— Hadley Wickham
Acknowledgements

Material for this session (and the next on joins) draws heavily on Chapters 9 and 10 of R4DS:
Tidy data

Each variable has its own column.

<table>
<thead>
<tr>
<th>country</th>
<th>year</th>
<th>cases</th>
<th>population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>1999</td>
<td>66</td>
<td>17,107,123</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>2000</td>
<td>3566</td>
<td>20,553,600</td>
</tr>
<tr>
<td>Brazil</td>
<td>1999</td>
<td>3937</td>
<td>172,663,622</td>
</tr>
<tr>
<td>Brazil</td>
<td>2000</td>
<td>84688</td>
<td>174,548,984</td>
</tr>
<tr>
<td>China</td>
<td>1999</td>
<td>215598</td>
<td>1272,334,392</td>
</tr>
<tr>
<td>China</td>
<td>2000</td>
<td>215566</td>
<td>1288,858,833</td>
</tr>
</tbody>
</table>

Each observation has its own row.

Each value has its own cell.
Why tidy data?

- Consistent Data Structure
- Tools work in uniform way
- Tools are easier to use
- Exploits R’s vectorised nature
- Thinking process is simpler
- Easier wrangling, viz, modelling...
Tidy data

Let’s look at the data sets we loaded in the “Importing data” session.

Untidy or tidy?
Tidying data
```r
df %>%
gather(new1, new2, old_1, ... old_n)
```

- **Give name to variable which currently forms column names**
- **Give name to variable which is spread over cells**
- **Current set of columns that represent values NOT VARIABLES**
```r
gather

tb_cases %>>%
gather(year, cases, 2:5)
```

- **Give name to variable which currently forms column names**
- **Give name to variable which is spread over cells**
- **Current set of columns that represent values NOT VARIABLES**
Your turn: Tidy “pop”

\[
\text{pop} \ %>>% \\
\text{gather}(\text{new1, new2, old_1, \ldots old_n})
\]

Give name to variable which currently forms column names

Give name to variable which is spread over cells

Current set of columns that represent values NOT VARIABLES
Import Excel workbooks

Import `data_spread.xlsx`. Assign to object “table2”

for Excel workbooks (will require package: `readxl`)

for csvs
spread

does the opposite of gather:

```
table2 %>%
  spread(key = type, value = count)
```
Real life example:

You’ve found ONS population projections that you’d like to use for forecasting future healthcare utilisation. Load into R and tidy!
This work is licensed as

Creative Commons Attribution-ShareAlike 4.0 International

To view a copy of this license, visit

https://creativecommons.org/licenses/by-sa/4.0/
End
Why tidy data?

```r
# A tibble: 6 x 6
  manufacturer model displ year cty hwy
  <chr>    <chr>   <dbl> <int> <int> <int>
1 audi     a4 quattro 2.00  2008  19   27
2 dodge    durango 4wd 3.90  1999  13   17
3 dodge    ram 1500 pickup 4wd 4.70  2008  12   16
4 ford     f150 pickup 4wd 4.60  2008  13   17
5 nissan   pathfinder 4wd 3.30  1999  15   17
6 subaru   forester awd 2.50  2008  18   23
```
Why tidy data?

A tibble: 12 x 6

<table>
<thead>
<tr>
<th>manufacturer</th>
<th>model</th>
<th>displ</th>
<th>year</th>
<th>environment</th>
<th>mpg</th>
</tr>
</thead>
<tbody>
<tr>
<td>audi</td>
<td>a4 quattro</td>
<td>2.00</td>
<td>2008</td>
<td>city</td>
<td>19</td>
</tr>
<tr>
<td>audi</td>
<td>a4 quattro</td>
<td>2.00</td>
<td>2008</td>
<td>highway</td>
<td>27</td>
</tr>
<tr>
<td>dodge</td>
<td>durango 4wd</td>
<td>3.90</td>
<td>1999</td>
<td>city</td>
<td>13</td>
</tr>
<tr>
<td>dodge</td>
<td>ram 1500 pickup 4wd</td>
<td>4.70</td>
<td>2008</td>
<td>city</td>
<td>12</td>
</tr>
<tr>
<td>dodge</td>
<td>durango 4wd</td>
<td>3.90</td>
<td>1999</td>
<td>highway</td>
<td>17</td>
</tr>
<tr>
<td>dodge</td>
<td>ram 1500 pickup 4wd</td>
<td>4.70</td>
<td>2008</td>
<td>highway</td>
<td>16</td>
</tr>
<tr>
<td>ford</td>
<td>f150 pickup 4wd</td>
<td>4.60</td>
<td>2008</td>
<td>city</td>
<td>13</td>
</tr>
<tr>
<td>ford</td>
<td>f150 pickup 4wd</td>
<td>4.60</td>
<td>2008</td>
<td>highway</td>
<td>17</td>
</tr>
</tbody>
</table>